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Abstract 

In a previous paper the authors analyzed and discussed the specular reflection coefficient 

of a plane boundary comprising a plate, a compliant layer and a fluid. The analysis showed that 

a negligible specular reflection coefficient may be derived provided specific resonance 

conditions are met. The resonance of concern is that between the surface mass of the plate and 

the surface stiffness of the compliant layer. The conditions of resonance included the value that 

must be assigned to the loss factor in the compliant layer. In the present report, an attempt is 

made to determine the conditions that must be placed on the surface stiffness of the compliant 

layer in order to increase the frequency range over which a negligible specular reflection 

coefficient may be maintained. The tolerances in these conditions are also estimated. 



Introduction 

The specular reflection coefficient R(k,C0) of a plane surface that interfaces with a semi- 

infinite fluid atop and that possesses a uniform surface impedance Z(k,C0), is familiarly given 

by 

R(k,(o) = [Z{k,(o)-Zx{k,(o)\[Z{k,(o) + Zx{k,co)\-x  ;   k ={k,ky}   ,     (1) 

where Z{(k ,CO) is the surface impedance of the fluid on the plane, (k) is the wavevector 

variable in the plane, and (co) is the frequency variable; see Fig. 1 [1]. The surface impedance 

of the fluid is expressed in the form 

Z^CO) = (pc/k3)   , (2a) 

k3(k,(o) = (l-y2)1/2U(l-Y2)-i(Y2-l)l,2U(y2-l) ;   y = (\k\c/co) , (2b) 

where (p) and (c) are the density and speed of sound in the fluid, respectively, U is the step 

function, and {k, (ö) defines the incidence on and the specular reflection from the plane 

boundary; again, see Fig. 1 [1]. From Eqs. (1) and (2a) one obtains 

R(k,co) = [Z(k,co)k3-l] [Z{k,co)k3+\Yl  ;   Z(k,co) = [Z(k,0))/(pc)]   .      (3) 

The normalized surface impedance Z(k, CO) is a complex quantity that can be expressed in the 

form 



Z(k,co) = ZR(k,co) + iZj(k,co)   , (4) 

where ZR and Z/ are real quantities and for the structural system to be stable it requires that 

ZR(k,co) + ReK^r1} > 0    . (5) 

In this connection it is observed, from Eq. (2b), that the normalized surface impedance (k3 )~l of 

the fluid on the plane is either wholly real or wholly imaginary. A real (k3)~ defines the 

supersonic spectral range; i.e., the range y < 1, and an imaginary (k3 )~ defines the subsonic 

spectral range, i.e., the range y > 1. In the vicinity of y = 1,  I (k3 )_1 I is large, at 

y = 1,  I (£3)~ I is singularly large. A propagating incidence is commensurate with a 

normalized surface fluid impedance that is wholly real and, therefore, may be cast in the form 

[Zx(£,©)] l  =   k3{k,co) = cos0 ;  y<l ;   0<0<(7t/2)   , (6a) 

(kc/co) = {sin(0)cos(0), sin(0)sin(0)}    , (6b) 

where {6, 0} is the angular vector of incidence; see Fig. 1. To obtain a substantially negligible 

specular reflection coefficient; namely 

R(k,CO) =   (£/V2)[l + £ + (£2/2)]-(1/2)   ;   l£l«l        , (7) 

the following conditions need to be satisfied simultaneously 



ZR(k,Q))cos(0)   = (l + £)  ;   Z/(fc,a))cos(0) = £    ;   J<\    , (8) 

where the smallness of I £ I, as compared with unity, is yet to be specified. 

In general, designing a boundary which presents a given mechanical surface impedance 

to the fluid atop is termed "conditioning". Thus, it is common to call a boundary that 

incorporates merely a plate, a "conditioning plate." The plate may be generalized into a basic 

boundary where this boundary possesses a mechanical surface impedance that roughly relates to 

that of a plate; e.g., a membrane. Situations arise in which a more compounded boundary needs 

to be designed. A member in a class of such boundaries may be one for which the boundary is 

designed to possess a mechanical surface impedance that largely matches that of the surface 

impedance of the fluid in the plane of the boundary. Often a matching of this kind requires a 

resonance to occur within the boundary. Another member, in this class of boundaries, may be 

one for which the boundary is designed to resonate with the fluid atop; i.e., the surface 

impedance of the boundary with that of the fluid in the plane of the boundary describes a 

resonant dynamic system. To satisfy either of the resonances, elemental surface impedances that 

are compliant layers must be incorporated into the composition of the boundary. A boundary 

that is designed to accommodate one or the other of these resonances by incorporating compliant 

layers is called, therefore, "conditioning compliance." A resonance usually defines and extends 

over a narrow frequency band that is centered on the resonance frequency. If the advantages, 

that the resonance bestows upon the conditioning compliance that it serves, are to be sustained 

over a wider and wider frequency band, means to maintain the resonance conditions, over such a 

frequency bandwidth, must be devised. Indeed, establishing techniques and mechanisms for 



implementing a wide frequency band conditioning compliance has been actively pursued; e.g., 

an implementation of this kind had been proposed and analyzed by Sheiba and Colleagues at 

EG&G during the late 1980's and early 1990's [2]. Usually these techniques and mechanisms 

call upon an elaborate compliant layer that is placed on a basic boundary, a compounded 

combination of surface stiffnesses and surface masses, and/or, in addition, an inclusion of even 

non-mechanical elements. In this report the simpler mechanism is examined: A compliant layer 

that is placed on an initial boundary classified as a conditioning plate; in this arrangement the top 

surface of the compliant layer faces the fluid. The mechanism for achieving a wide-frequency- 

band conditioning compliance is then associated with rendering the surface stiffness of the 

compliant layer frequency dependent. The analysis of this frequency dependence allows one to 

demonstrate, in a straightforward manner, the conditions, and the tolerances on these conditions, 

that need to be satisfied in order to achieve the desired boundary. Although this approach is of 

limited scope, it addresses questions that are relevant to any other attempt to achieve a wide- 

frequency-band conditioning compliance. 

Nearly a decade ago the authors discussed the criteria that ensures a negligible specular 

reflection coefficient for a boundary that incorporates a panel with a compliant layer atop; the 

fluid then lies atop this compliant layer [1]. The criteria stated in Eq. (7) are compatible with 

those stated in Reference 1. The negligible specular reflection coefficient is achieved, in this - 

reference, only over a narrow frequency-band (and/or over a narrow angular-band). The purpose 

of the present report is to decipher conditions that may be placed on a boundary, comprising 

essentially a panel and a compliant layer, that will ensure a negligible specular reflection 

coefficient over a wider frequency-band (and/or over a wider angular-band). Recently, a 

corresponding attempt was undertaken with respect to dynamic absorbers. In this attempt a 



number of sprung masses, with a wide distribution of resonance frequencies, replaces the single 

sprung mass [3,4]. In an analogous manner, one may then analyze and discuss the implications 

involved in rendering a boundary that passively maintains these wider frequency bandwidths. 

Moreover, one may even address as to whether an actively controlled boundary may be devised 

with the appropriate properties to maintain these wider frequency bandwidths. 



I. Normalized Surface Impedance of a Boundary Comprising a Panel and a Compliant Layer 

The elements of a fluid-loaded boundary of this kind are depicted in Fig. 2a and the 

equivalent circuit diagram is shown in Fig. 2b [1]. An isotropic panel is characterized by the 

normalized surface impedance 

Z2(k,co)   = icoMZg(k,co)   =   i{colcoc£c)Zg{k,co) ;   M = [M/(pc)], (9a) 

Zg{k,co)   = Kl-g)-irj\ ;   r] = [T]2+{gT]p)}  ;    g = (l + i1j)(\k\/kp)n 

andif n = 4, kp=(C0C0c/c2)     , (9b) 

M  = (l + T72
2r1M2 ;   M2=[M2/(pc)];    £c=(cocMTl     ; 

£2   = (0)CM2)-
1    ={\ + VllyX£c;    T] = (7]2+g7]p)       , (9c) 

where (M2) is the surface mass, (kp) is the free wavenumber, (C0C) is the critical frequency 

with respect to the speed of sound (c) in the fluid, (£2) is the fluid loading parameter, (n) is the 

flexural index [(n) is equal either to (2) or (4)], (gr]p) and {r\2) are the loss factors associated 

with the surface stiffness and the surface mass of the panel, respectively, and it is to be 

understood that the explicit dependence of quantities and parameters on the vector variable 

{k, CO} may, at times, be omitted as obvious; e.g., g = g(k, CO) and 7]p = T]p(k,CO) in the 

above equations. Were the panel orthotropic a replacement in the manner 



{\k\lkp)n{\ + ir}p)^[(klkp)
2{\ + iT)px) + {kylkpy)

2 (l + iVPy)]{n/2)    , (9d) 

must be introduced in Eq. (9b) [5]. In Eq. (9d), {kpx, kpy) and {rjpx, r\py} are the free 

wavevector and the loss vector, respectively. Similarly, if n = 2, rather than n = 4, the free 

wavenumber (kp) assumes the simpler form 

kp =(0)/Cp) with c_ independent of (CO)    , (9e) 

and (C0C) becomes merely a suitable normalizing frequency. For the sake of simplicity the 

panel is considered to be an isotropic plate so that (c„/c) = (o)/0)c)
1/2 and n = 4 reign; 

notwithstanding that a situation may exist in which the employment of orthotropic panels, that 

are or are not plates, may prove beneficial. 

The compliant layer is characterized by the normalized surface impedance 

Zn(k,co) ={Kli(0){\ + ir]n)  ;    f = (KnIK)  ■    co2  =(Knl(Mn)   , (10a) 

f = (co/co0)
2f ; <o2

0=(Kn/M) = afa + rjl);  Kn=[Kn/(pc))   , (10b) 

where, again, the surface impedance of the compliant layer is considered to be isotropic, (Kn) 

is a constant (independent of {k, co}) surface stiffness, (7]12) is the loss factor 

associated with the compliant layer, and (/) is a dimensionless and a real function of the 

normalized frequency (C0/C0o); namely, / = f(a>l(00). The normalizing frequency (CD0) is 

defined in Eq. (10). The factor (/)" is a modification parameter that defines the actual surface 



stiffness (K) of the compliant layer in terms of the constant surface stiffness (Kl2), again, as 

defined in Eq. (10). In this context, (/)" is termed the modification factor and (/) is, then, the 

inverse modification factor. 

The normalized surface impedance Z{k,0)}, of the boundary, that is sketched in Fig. 2a, 

is 

Z(k,co) = Zn(k,(o)Z2(k,CQ)[Zn(k,CD) + Z2(k,Cü)Y1     , (11) 

as can be verified with the help of Fig. 2b. Substituting Eqs. (4), (9) and (10) in Eq. (11) one 

obtains 

Z(k,CO) = {i(DM){Zg){\ + i7]n)[{\ + ir]X2)-}Zgr
X     , (12a) 

or equivalently 

[ZRcos(9)] = Bc((D,e)[rin~f\Zg\
1+ 77(l + 77l

2
2)]/A    , (12b) 

[Z7cos(0)] = Bc(co,d)[(l + 71f2)(l-g)-f\Zg\
2]/A   , (12c) 



where 

Bc(co,9) = (Cü/coc)[cos(9)/£c]   , (13a) 

^7     .2 A =  \{\ + iT]n)-fZg\
l      , (13bl) 

which, in turn, may be cast either in the form 

A  = [{1-/(1-S)}2+{W77}2]   , (13b2) 

or, equivalently, in the form 

A = [<X + Ti?2) + f2\Zg\
2 - 2/{(l-g)-771277}]     , (13b3) 

Z(k,co) = ZR{k,co) + iZj{k,(o) ;    Z*   = [{\-g) + ir]\   ; 

IV2 = [(l-£)2+772]     . (13c) 

As already indicated in Eqs. (12b) and (12c) and hereafter, quantities that are dependent on 

[k, 0)}, but are to be evaluated in the supersonic range only, are to be stated free of this explicit 

dependence. Thus, for example 

R(k, co) = R{ {co I c) sin(0) cos(0), (co I c) sin (6) sin(0), co] -> R . (6c) 

10 



Subjecting Eq. (12) to the conditions stated in Eq. (8) and imposing, in addition, that £ = 0, one 

obtains 

[ZRcos(d)]0 ^[B(co,6)\Zg I2 {r)n{\-g) + 7)Tl}0 =1     , (14a) 

[Z; cos(0)]o -> 0  ;  [(l + 7722)(l-g) = f\Zg\
2]0     , (14b) 

[A]0 -* [/(l - £)-] {7]12 (1 - g) + 7]}1 ]0      . (14c) 

The brackets [• • ~]0 evaluate the enclosed quantity with £ = 0. [cf. Eq. (8).] Were Eq. (14) 

satisfied, the specular reflection coefficient R, stated in Eq. (3) with Eq. (6) imposed, would be 

equal to zero. Thus, Eq. (14) constitutes the design criteria for achieving a boundary of 

negligible specular reflection coefficient. If Eq. (14) is only nearly satisfied, the specular 

reflection coefficient R, stated in Eq. (3) with Eq. (6) imposed, would deviate from its value of 

zero. One may then request that the deviation in I RI does not exceed a predetermined value and 

request the limits on the parametric variations that would ensure that this predetermined value for 

IRI would not be exceeded. These parametric variations constitute the design criteria tolerances 

for the construction of a surface for which the absolute values for the specular reflection 

coefficient remain tightly bounded within these preset values. 

11 



II. Designing a Negligible Specular Reflection Coefficient for the Boundary Specified in 

Section I 

To establish an appropriate connection with Reference 1 and to duplicate the results 

thereof, one needs merely conform some of the quantities and parameters to those used in 

Reference 1; namely 

8^0 ; (grip)^0 , 7i^T]2 ;    f = l    . (15) 

Substituting Eq. (15) in Eq. (14) one immediately recovers Eq. (30) of Reference 1. [Erratum: 

(m) in Eq. (30c) of Reference 1 needs to be corrected to read (M2).] In Reference 1 it was 

found that a negligible specular reflections coefficient, under the conditions stated in Eqs. (7) and 

(15), is achieved for a frequency (a>) that is very nearly equal to {(Ol) and for an angle (6) 

defined by the relationship 

(co/corf = (l + Vn)   ;    (^12/«)cos(0) = (7]12+772)(l + 771
2
2r

1    ; 

(coM2)cos(0) = (7712+772)     . (16) 

[cf. Eq. (30) of Reference 1.] 

12 



The purpose in the present report is to examine the parametric values of the boundary that 

are needed to achieve a negligible specular reflection coefficient over a wider frequency 

bandwidth and/or a wider angle of incidence than that achieved in Reference 1. To set the stage 

it may be useful to assume, again, that the surface impedance of the panel is largely surface mass 

controlled; namely 

Z2(k,co)-^icoM(\-iT]2) ; g->0  ;   gr]p->0  ;   7?->772 (17a) 

Substituting Eq. (17a) in Eqs. (12)-(14) yields 

[ZÄcos(Ö)] = Jßc(0),ö)[7712/(l + 771
2
2) + 7]2(l + 771

2
2)]/A    , (18a) 

[Z/cos(Ö)] = JBc(«,ö)[(l + 771
2
2)-/(l + 772)]/A    , (18b) 

A = [(1 + 77!2
2) + (/)2 (l + 77J) - 2/{l - 7712772}]   , (18c) 

[ZRcos(0)]o =[Bc(co,6)(l + ll)(Vi2 +niY\ =1    . (19a) 

[Z7 cos(0)]o -> 0  ;   [(1 + T722) = /(1 + 77|)]0    , (19b) 

[A]0^[f{(rll2+rl2)}2]0   ;   Z*=(l + i7fe)  ;    \Zg l2 = (I + 772)    . (19c) 

From Eqs. (9c) and (10b), Eqs. (19a) and (19b) may be cast in the form 

13 



[(^i2)]o=[{£c(^0)(l + 772
2)-772}]o    , (20a) 

,2N-1 

K/)]0 = (i+^ru+tote)];} . (20b) 

where Bc(co,6) and (772) are stated in Eqs. (13a) and (9), respectively, and, again, [• • -]0 

encloses parameters that are evaluated for negligible specular reflection coefficients. For a given 

boundary {C00l (Oc), (£c) and {r\2) are assumed to be specified parameters; the variables in 

Eq. (20) are then {co/C0o) and [cos(0)]. The loss factor [(7712)]0 and the inverse modification 

factor [(f)]0 are depicted, as functions of {col(00) and [cos {6)1, for several values of 

{(0o I (Oc), {£c) and {TJ2), in Figs. 3 and 4, respectively. For checking purposes, the 

corresponding absolute values of the specular reflection coefficients 

[I R{{COIC0o), cos (0)} l]0, as functions of {(ol(00) and [cos {6)1, are depicted in Fig. 5. 

Figures 3-5 clearly demonstrate that extended regions in which values of [(7712)]0 and [{f)10 

can be found and that these values indeed yield, in these extended regions, negligible specular 

reflection coefficients; [i?]0 -» 0. Equation (10) reminds one that [(/)-1]0 is the modification 

parameter in the surface stiffness {K) of a compliant layer that necessarily renders a boundary to 

be of negligible specular reflection coefficient 

[K{colco0)10  = [{f{co/co0)}-l10 Kl2    , (21) 

where K12 is a constant independent of frequency; the frequency dependence of [K{co I C0o )10 

is entirely accounted for by the modification factor [{f{C0l(Oo)}~x1o. Equation 20, establishes 

14 



the relationship between the inverse modification factor [(f)]0 and the loss factor [(^7i2 )]o • 

This relationship is depicted in Fig. 6a for two values of (772); 772 =10    and 10   .On the 

other hand, again using Eq. (20), the dependence of the modification parameter [(/)" ]0 on 

{(Ol (00) and [cos (0)] is depicted in Fig. 6b. [cf. Fig 4.] Figure 6 shows that in the lower 

range of the loss factor in the compliant layer; i.e., when [(T]n)\0 < (1/2), [(/)" ]0 is 

quadradically dependent on the normalized frequency {(Ol (00) and is largely independent of the 

angular function [cos (0)]. [cf. Fig. 3.] As the loss factor [(77i2)]0 increases into the higher 

range; i.e., when [(T]12)]0 ^ (3/2), the modification parameter [(/)" ]0 becomes 

asymptotically independent of the normalized frequency (CO I (00), but becomes inversely 

proportional to [cos   (0)]. In addition, Eq. (20) states that a boundary of negligible reflection 

coefficient requires the loss factor [(?7i2)]0 to be linearly dependent on the normalized 

frequency (Oil(00) and on the angular function [cos (0)]. In this connection one realizes that 

the damping of the boundary is contributed by both, the damping in the panel, as measured by 

(772), and in the compliant layer, as measured by (T]l2)- The combined loss factor (T]x2 + T]2) 

may exceed the loss factor necessary to achieve a negligible reflection coefficient. In such a case 

one may require [(T}12)]0 to be negative. This requirement cannot be achieved passively. Then, 

to achieve a negligible specular reflection coefficient, a call for an active control surface 

impedance may become mandatory. 

15 



III. Variations of [(T/12)]0 and of [(f)]0 

Although a negligible specular reflection coefficient may be a design goal, often 

achieving an absolute value for the specular reflection coefficient that is small compared with 

unity may suffice. Indeed, for many practical purposes a IRI (=   I R(k, CO) I that lies in the 

supersonic range, where 7 = (\k I cl CO) < 1) that is less than one third is satisfactory enough. 

The extreme of this value indicates and absorption of 90% of the incident spectral density. Of 

course, the limits on the variation in I RI may be practically induced by the inability to meet the 

prescribed values of the loss factor [(7712)]0 and the inverse modification factor [(f)]0. Using 

Eqs. (18) and (19) one may derive relationships between the values of IRI and the proportional 

variations of [(Tjl2)]0 and of [(f)]0. These variations and relationships are readily derived to be 

[(Thar^AOta) = ±2l/?l[l + (772/7712)]0 

{[l + 2T712772)-
1ß+[2T712(H-r71

2
2)-

1]Jr<1/2)   , (22a) 

[(/)_1]0A(/) ü [(/)]„A(/r!   = ±2ltfl[l + (772/7712)]0 

{[^d + ^rV72      , (22b) 

where (A) designates a variation in the quantity on which it operates. In Figs. 7 and 8 the ratios 

{I RI [77i2]0}_1 A(J712) and {I RI [(/)]0}_1 A(/) are depicted as functions of [(r]12)]0 and of 

[(/)]<?' respectively, for values of (7]2) equal to 10~2 and to 10"1. It is immediately clear from 

Figs. 7 and 8 that when [(jjl2 )]0 < 1 or equivalently when [(/)]0 = [(1 + r/22 )]0 (1 + 7]j )_1 < 2, 

16 



the permissible variations of [(7712)]0 are much more laxed than those of [f]0, if reasonable low 

values are to be achieved in the designed \R\; \R\, again, is the specular reflection coefficient 

of the conditioning compliance in the supersonic range of spectral space, [cf. Eqs. (3) - (6).] On 

the other hand, when [(T]n )]0 > 1 or equivalently when [(f)]0 = [(1 + 7]f2 )]0 (1 + vfc )_1 > 2, 

the permissible variations of [(^i2)]0 are comparable to those of [(f)]0. Moreover, in this 

range of values the variations of [(7712)]0 and of [(/)]0 are comparable to those regarding \R\; 

i.e., if in the supersonic range of spectral space IRI is allowed to reach (1/3), the proportional 

variations of [(j]n)]0 and of [(/)]0 are allowed approximately the same reach. The situations 

just discussed are illustrated in Figs. 9 and 10. In these figures I RI is determined with 

(7712) = 1.2[(7712)]0 and with (/) = l.l[(/)]0, respectively. The range in which IRI   <  0.3 

and the range in which IRI   >  0.3 are separated by a solid line. The variational limits depicted 

in Figs. 7 and 8 are properly reflective in Figs. 9 and 10, respectively. Whether the maintenance 

of the parameters [{T]n )\o and [(/)]<? can De kept within the required limits, in any practical 

situation designed to sustain IRI   <  0.3, is yet to be tested. The elements of the design and the 

form of the testing are, however, in hand, in part, due to this report. 

17 



IV. Concluding Remarks 

In Reference 1, the sensitivity of IRI to variations in the values of (Kn ICOc) and of 

(7712) are investigated. In this investigation, IRI is restricted not to exceed (1CT1) and 

[£c I cos (0)] is maintained at (10   ). The sensitivity of IRI to these variations seems to be 

supported by the analysis presented in the preceding section. Indeed, both Figs. 5 and 6 of 

Reference 1 are so supported by Figs. 9 and 10. 

In the same vein, the greater laxity in the sensitivity of the specular reflection coefficient 

I RI to variations in the values of (Tll2) as compared to those in the values of (/) is significant 

to the design process. If one focuses on the limited range in which [{T]n )]0~ 1 and, therefore, 

[(/)]o~ ^. the specification of these parameters become well nigh impractical, especially with 

respect to the specification of [(f)]0. The tolerances that are imposed, in the design processes, 

on the value of [(7712)]0 and, especially, on the value of [(/)]0 that lie within the range of these 

inequalities may thus become too difficult to achieve. Without mentioning specific cases, failure 

to meet these kind of values and tolerances have already been encountered [6]. Failure of this 

type and in this range are caused not only as a result of the overly strict tolerances, but also 

because the dependence of the modification parameter [(/)_1 ]0 on the normalized frequency 

(0)/0)o) is steep; essentially quadratic. The former is illustrated in Figs. 7 and 8 and the latter 

in Fig. 6. It appears, therefore, that in trying to design a viable conditioning compliance, the   - • 

range defined by the inequality [(7712)]0> 1 and, therefore, also the inequality [(/)]0>2, need 

to be imposed. In this range, not only are the tolerances more reasonable, but the frequency 

dependence of the modification parameter is more achievable, notwithstanding that the 

dependence on [cos(0)] is more severe in this range than in the previous lower range, where 

[(77i2)]o~ 1 ^ [(/)lo^ 2. [cf. Figs. 6-8 and remarks post Eq. (21).] Clearly, criteria, and 
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tolerances on these criteria, that are involved in the design of a compounded format for the 

conditioning compliance may follow similar treatments with largely similar conclusions. 

19 



Incidence 

Specular 

^Si   Reflection 

Interface of the boundary 

with the top fluid 

Fig. 1. Incidence and specular reflection as defined by the angular vector {6, (j)}. The 

velocity Vi (k, CO) is on the interface of the boundary and the top fluid. The surface 

impedance Z\(k, CO) is that of the top fluid and Zi (k, CO) is the surface impedance of 
the basic boundary; e.g., a backing plate. 
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(P>c) Fluid 

Compliant Layer 

Basic Boundary 
a) 

Fig. 2a. A boundary composed of a basic boundary and a compliant layer. The top 
surface of the compliant layer is facing a semi-infinite space filled with fluid. The 
surface impedances Zl5 Z12 ^ Z2 of the fluid, the compliant layer and the basic 
boundary, respectively, are indicated. Also indicated, are the velocities Vx and V^ on top 
and bottom surfaces of the compliant layer, respectively. An external drive, P{, is shown 
applied at the interface of the compliant layer and the fluid. 

b) 

z, 

< (v, - V2) (i) 
Z12 

Y 

4 . ■ 

1—_____ 
^. 

t I > ey 

v2 

y 
z2 

Pi 

Fig. 2b. Equivalent circuit diagram of the model depicted in Fig. 2a showing also the 
possibility than an external drive, Pe, may be applied directly to the basic boundary. 
When Pl=0, the radiated pressure is Prcuj =ZlVl. 
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%j  0.6 

a) {(0/(00 ) 

[(rin)]0   4 * 

b) ((0/(00) 

[(Vn)]0   4, 

(0)/C0o) 

Fig. 3. The loss factor [{7]l2)]0 as a function of {(ol(0o) and [cos (0)]: 

a. (0)o/6)c) = (l/20) , 772 =10"2 

b. (co0/coc) = (1/20) , ?72 =10_1 

c. (fflo/fl>c) = (l/50), T72=10"2 
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(C0/0)o) 

[(f)]o 

b) 

Uf)]o 
30 

20 

10' 

1        (0)/C0o) 

c) *    o.l l (0)/(Oo) 

Fig. 4. The inverse modification factor [(f)]0 as a function of (colC00) and [cos (0)]: 

a. (ö)o/fi)c) = (l/20), 7?2=10"2 

b. (0)o/C0c) = (1/20) , 772 = 10_1 

c. ((0ol(oc) = (1/50) , T72 =10~2 
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[I* l]ö, I {. 

a) (C0/(0o) 

[I R \]0 

0 
0.2 

% 

b) 

r0. 0.6 
^       0.8 

[i R i]0 ;  

c) 

(0)/CDo) 

(C0/(Oo) 

Fig. 5.    The specular reflection coefficient [I R \]0 as a function of {(ol 0)o) and cos (0): 

a. (C0o/0)c) = (1/20) , 772 =10 

b. (0)o/6)c) = (l/20) , 772 =10 

c. (co0/o)c) = (1/50) , 772=10 
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30 

^   20 h 

10 

~i i      i     i   i   rrT'i i i      i     i    i   i■"i""i i i i      i—rr~i—i i i 

772 = 10" 

_i i i i i ■ i ■ ■ i '    i   '  

7]2=10 -1 

i i i i ' i 

a) 
0.01 0.1 [(TlllJlo l 10 

_ _2 —] 
Fig. 6a.  The relationship between [(7]l2)]0 and [(f)]0 curves for rj2 = 10    and 10 

are largely indistinguishable. 

(fl)/Q)0) 

-1. Fig. 6b.   The modification parameter [(/)   ]0 as a function of (co/(00) and cos (6) 
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10 

Fig. 7. The allowed normalized variations in (7712) as a function of [(77i2)]0- 

7_^ 

0 
10 20 30 

Fig. 8.      The allowed normalized variations in (/) as a function of [(/)]0. 
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(co/co0) 

Fig. 9.    The specular reflection coefficient IRI as a function of (CD I (o0 ) and cos (0) 

where the inverse modification factor [(f)]0 is deviated by a 10%; i.e., 

[(Ir\ A/=±o.i 

K  

IRI , 

1   0.1 
1 io 1       (co/co0) 

Fig, 10. The specular coefficient IRI as a function of (col (00) and cos (0) where the 

loss factor [(77i2)]0 is deviated by 20%; i.e., [(rin)~l]0  Arjn = ±0.2 

27 



References 

1. G. Maidanik and J. Dickey, "Designing a negligible specular reflection coefficient for a 

panel with a compliant layer," Journal Acoustical Society of America, 90,2139-2145 

(1991). 

2. L. S. Sheiba and P. A. Wlodkowski, "Underwater sound coatings design on the basis of 

non-uniform materials," EG&G TR-F028-28 RATLAB (1995). 

3. M. J. Brennan, "Wideband vibration neutralizer," Noise Control Engineering Journal 45, 

201-207 (1997). 

4. G. Maidanik and K. J. Becker, "Characterization of multiple-sprung masses for wideband 

noise control" and "Criteria for designing multiple-sprung masses for wideband noise 

control," both submitted for publication in JAS A. 

5. M. Heckl, "Untersuchungen an orthotropen platten," Acustica, 10,109-115 (1960) and 

also G. Maidanik, "Influence of fluid loading on the radiation from orthotropic plates," 

Journal of Sound and Vibration, 3,288-299 (1966). 

6. J.J. Dlubac, Private communication. 

28 



INITIAL DISTRIBUTION 

Copies Copies 

2 

2 

NAVSEA 03T2 
2   Taddeo 
1   Biancardi 

ONR/ONT 
1   334    Tucker 
1   334    Radlinski 
1   334    Vogelsong 
1   334    Main 
1   Library 

NRL 
1   5130 Bucaro 
1   5130 Williams 
1   5130 Photiadis 
1 Library 

NUWC/NPT 
2 Cray 
1 Sandman 
1 Harari 
1 Boisvert 
1 3332   Lee 
1 Library 

DTIC 

Johns Hopkins University 
1   Green 
1   Dickey 

ARL/Penn State University 
1   Burroughs 
1 Hwang 
2 Hambric 

Cambridge Collaborative 
1   Manning 

Cambridge Acoustical 
Associate 
1   Garrelick 

J. G. Engineering Research 
1   Greenspan 

MIT 
1   Dyer 

2 Boston University 
1     Pierce 
1     Barbone 

2 Penn State University 
Koopman 

2 Virginia Tech 
1     Knight 
1     Fuller 

CENTER DISTRIBUTION 

spies   Code Name 

1 Oil Corrado 

2 0112 Douglas 
Halsall 

1 20 

1 26 Everstine 

1 6401 Castelli 

1 70 Covich 

4 7015 Fisher 
Sevik 
Hamly 
Vendittis 

1 7020 Strasberg 

3 7030 

2 7200 Niemiec 
Dlubac 

2 7250 Shang 
Maga 

4 842 Graesser 

2 3421 (TIC-Carderock) 

Catholic Uni. Of Am. Eng. 
Dept. 
2    McCoy 

29 


